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We discuss curvature corrections to Fresnel’s laws for the reflection and transmission of light at a nonplanar
refractive-index boundary. The reflection coefficients are obtained from the resonances of a dielectric disk
within a sequential-reflection model. The Goosnaldlaen effect for curved light fronts at a planar interface can
be adapted to provide a qualitative and quantitative extension of the ray model which explains the observed
deviations from Fresnel’s laws.
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The fabrication of lasing microresonatdrk 2] and opto- Curvature corrections to Fresnel coefficients have been
mechanical microdevicdS8] has generated a surge of inter- addressed in the past in a number of works, by applying
est in the confinement and propagation of light in small di-various techniques; see, for example, R¢fs3—-16. The
electric structures. Some understanding has been achievédrks closest in spirit to the present paper are those that
from the ray optics of these systems, complemented bgmploy the complex ray method, e.g., to describe light rays
Fresnel's laws of refraction and reflection at the interfacesapproaching a disk from outsidé5,16.

e.g., in order to identify and describe the relevant resonator Although we restrict our discussion to circular interfaces,
modes[1,2]. Fresnel's laws give the probability of reflection the results for the reflection coefficients should be applicable
and refraction of plane electromagnetic waves at planar into microresonators of general shape as long as locally the

terfaces of media with different refractive index Mi-  curvature can be approximated as a constant. .
croresonators, however, often are so small that the curvature According to Fresnel's laws, a plane electromagnetic
of their boundary cannot be neglected. wave incident on a planar dielectric interface with angle of

In this paper we investigate, in the limit of large wave incidencey is reflected with the polarization-dependent co-
numbers, the corrections to the Fresnel coefficients that aggfficients[17]
pear due to the curvature of the dielectric interface. The re-

flection coefficients are obtained via a sequential-reflection i SiP(x—7) _|ncosy+cosy|?

model [4] from the resonance widths of a microresonator, R _sz(X+ 7) ~ |ncosy—cosy| ’ (1a)
which are analytically accessible for large wave numbers.

The deviations from Fresnel's laws are most noticeable tarf(y—7) |cosy+n cosy|?

around the critical angle for total internal reflectiog, RIE__AXT )\ EOX n (1b)
=arcsin(1n) (where the refractive index of the surrounding tarf(x+ ) |COSY—Nncosy

medium is set to unifyand amount to a systematic reduction

of the reflection probability. where TM(TE) signifies transverse polarization of the mag-

The reduction of the reflection probability is convention- netic (electrig field at the interface ang=arcsinQisiny) is
ally related to tunneling escape at the curved interface. Iihe direction of the refracted beaimccording to Snell’s layv
view of the previous success of the ray model, which oftenis Let us compare the Fresnel coefficients with the reflection
desired to be retained for its simplicity, we provide an alter-coefficients at a curved interface with radius of curvatye
native qualitative and quantitative explanation of the devia-Their angular dependence can be conveniently obtained from
tions by incorporating into this model the Goosrdaen ef- the energies and widths of resonance states in a two-
fect[5—10]. This effect results from the interference of rays dimensional circular disk of radius.. In this geometry the
in a beam with slight variations of the angle of incidence andwo possible polarization directions decouple and angular
consists of a shift of the effective plane of reflection. At amomentum(guantum numbem) is conserved. We introduce
curved interface, it turns out that the reflection probability ispolar coordinates and ¢ and denote th¢compley wave
then reduced because the angle of incidence at the effectiveimber byk. We will concentrate on the case close to geo-
interface is smaller than at the physical interface. metric optics Ré&r.>1.

There is evidence obtained in the context of quantum- The resonance states are obtained by matching the wave
mechanical scattering problenisl] that incorporating the field proportional toJ,,(nkr)e'™? inside the disk(with the
Goos-Hachen effect is equivalent to a semiclassical ap-Bessel functiond) atr=r to the wave field proportional to
proximation. Also the effect has been used in Ré®] to H%)(kr)eim“’ outside the disk(with the Hankel function
explain the decreased spacing of resonances observed in éxt)), where the matching conditions follow from Maxwell’'s
periments with dielectric spheres, in terms of an effectiveequations:
optical size of the cavity that is larger than its physical size.

Our work can be seen as complementary to this previous Jm(nkrc)Hf'nl),(krc):n‘];n(nkrc)HE’nl)(krc) (2
study, because we are concerned with the resonance widths,
not only the resonance energies. for TM polarization, and
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NIn(Nkr HE (kro) =37 (nkr)HP(kre) — (3) Re ki = 50

in the TE casdéprimes denote derivativesGiven a complex o
solutionk, the angle of incidence is obtained from the real <
part by comparing the angular momentum in the ray picture_§
(L=npr;siny,p=ARek) and in the wave picture L(
=hm),

0.
m L
S L
SINX= 1 Rekr,’ @ E
while the reflection probability N o
0 05 1
R=exp(4n Imkrcosy) (5) SIn'y;

FIG. 1. Resonance widths Imkr, for a dielectric disk with

follows from the imaginary part ok because it determines Rekr.—50 and a refractive index—3.29 (upper panel and n

lth?] Intens.(ljty dﬁczy rat@;‘.:h—.Z Imke (W'tg ¢ thle V((EjIOCIlt)y of 1.3 (lower pane), for TM and TE polarized light, as a function of
ight outside the disk which in turn can be related Rby a the angular momenturfparametrized according to E¢)]. The

ray-based model of sequential reflecti¢ After s reflec- analytical result from Eqg10),(11) (solid curvesis compared with
tions the wave intensity inside the disk drops to a frac®n  he exact results from Eq2),(3) (squares

of the initial intensity. Reflections occur with a ratg

=c/(2nr¢ cosy), where the denominator is the optical path where y is given as a function of Re by Eq. (4). We ex-

length between consecutive reflections. After titneve re-  pandeda linearly in Imk and neglected terms of order

late R"”s=e~", directly yielding Eq.(5). _ ~ (Rekr,) 1. Equation(6) can now be solved fow, without
Because the discrete set of resonance energies obtaingfly further approximation. From the imaginary part one de-

from Egs.(2) and(3) is meaningful only for the disk, let us dyces

first derive analytical expressions for the resonance width, as

a function of a continuous resonance energy, that smoothly

interpolate between these solutions. It is interesting to note —Im krc=n cosy

[4] that one cannot simply expand Edqg8) and (3) in Imk

whenk is not close to an exact solution. Moreover, for TE Although this can already be taken as the final result, we

polarization Imk will diverge at the Brewster angle if it is may further insert the uniform approximati¢h8]

calculated by inserting the Fresnel coefficiébb) into Eq.

f
Im arctan—. (10
cosy

(5). In order to achieve a more accurate expansion we sepa- e 1 [Kys(2)
rate out the problematic term and cast E@.and (3) into F ==incosy| 1+ st | Kia(2) -1]] (11)
SIntnp \ ™1/
the form
. and similarly for F™=FTE/n2 with the modified Bessel
Im(nkre) = F(kr,) (6) function K, the angle of refraction; (which is a complex
Jm(nkre) o number for y>yx.), and z=—i Rekr,cos7/(3sirt7). In
. Fig. 1 we illustrate that Eqg10) and(11) agree very well
with with the exact solutions of Eq§2) and(3), even close to the
, Brewster angle for TE polarization, and interpolate smoothly
__— HO (x) N in between.
FHx)= ”H(l—)(x)' FR)=n""FH %), () The angular dependence of the reflection coefficients can
m now be obtained by combining Eq%) and(10), giving the
depending on the polarization. In both cas@kr,) is a  fnal result
slowly varying complex function of its argument, and the cosy +i 72
argument can be taken real becaus&kR@mk|. The loga- R= —ﬂ . (12
rithmic derivative of Bessel functions, however, is a rapidly cosy—|

fluctuating function, and its dependence onkrhas to be Figures 2 and 3 show the results for the two valuekRe

worked out carefully. This can be achieved by approximation_ 50 and Re&r,=150, respectively. Deviations from

by tangentg 18]: Fresnel's lawdEq. (1)] are most visible around the critical
JL(nkr) angle y.=arcsin(lh) where the reflection coefficients in-
T — _tanacosy, (8)  crease rapidly as the regime of total internal reflection is
Im(nkre) approached. The correction consists not only in a broadening

of the transition interval, but most notably also in a shift of
this transition region toward higher angles of incidence, re-
sulting in a systematic reduction of the reflection coefficient.

w a

> 4+|n|mkrccosx, 9

a=mcoty+my—m
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Re kr, =50, n=1.54

exact
= ==- Goos-Hanchen
------ Fresnel’s law
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FIG. 2. Reflection coefficient®R in a dielectric disk with
Rekr.=50. The solid curve is the analytical result E#2), which
smoothly interpolates between the exact solutions of Ezjsand
(3) with real part close to 5(Qsquares, translated into angular-
dependent reflection coefficients by E¢4) and (5)]. The dashed
curve is the result of incorporating the Goosrdhen effect into a
ray model(assuming for TE polarization that the shift is the same a
for TM polarization, for reasons explained in the jexthe dotted

curve is Fresnel’s lawEg. (1)].

. Re kr, = 1|50, n= 1.5f'.

—  exact
——=-  Goos-Hanchen
----- Fresnel’s law
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FIG. 3. Same as Fig. 2 but for a wave numberkRe=150. The
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FIG. 4. (a) Goos-Hachen shift at a planar interface. An incident
beam containing contributions from plane waves of slightly differ-
ent angles of incidencg appears to be reflected at a position that is
shifted a distancegy away from the point of incidence. Alterna-
tively, one can think of the beam as being reflected at a shifted
interface indicated by the dashed linéls) Goos-Hachen effect at
a curved interface. The reflection seems to occur at an interface of
larger curvature radius,>r . under a smaller anglg’ <y of inci-

The deviations from Fresnel’s laws in Figs. 2 and 3 in-
crease as Rler. is reduced, that is, the more noticeable the
curvature of the interface is. On the other hand, in the zero-
wavelength limit Ré&r.—o of geometric optics any inter-
face appears planar, and Fresnel's laws should apply without
modification. Indeed, it can be seen that they are recovered
from Eq. (12) when the approximation by tangents is also
applied to the Hankel functions idF, resulting in ™
=in"'cosy, F'E=incosz;. The deviations close to the
critical angle are directly related to the breakdown of this
approximation when the argument of the Hankel functions
becomes smaller than the index. As we will discuss now, the
curvature corrections to Fresnel's coefficients can be ob-
tained within a minimal extension of the ray picture when
the Goos-Hachen effect is taken into accoufthe result
obtained is given by the dashed curves in Figs. 2 and 3

The Goos-Hachen effec5-10 refers to the displace-
ment of the reflected beam when the incident beam consists
of rays with slight variations of the angle of incidence, and
arises because each ray experiences a slightly different phase
shift when it is reflected. As is illustrated in Fig(a}, the
lateral shift along the interface can also be interpreted as
resulting from a displacement of the effective plane of reflec-
tion (a signature of this displacement is the increased Wigner

result based on the Goos-htzhen effect is almost indistinguishable delay time which has recently been measured at metallic

from the exact result.

gratings[19]).
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Since at a plana}r interface the rt.aﬂecti.on law is not af-of curvaturer; can then be calculated by applying the for-
fected by parallel displacement and is fulfilled for the meanmulas of Ref[7] (which are lengthy expressions and hence
angles of incidence, the reflection coefficients are not afnot given herg The result of this Goos-Hehen-effect-
fected by the Goos-Hehen effect—the only consequence pased approach is presented as the dashed curves in the up-
of the s_hght variation of angles is that t_helr_angular depen-per panels of Figs. 2 and 3. There is good agreement with the
dence is smeared out. However, the situation changes atact results obtained within the sequential-reflection model.
curved interfac¢11] as shown in Fig. é). The intersection o, TE polarization and the chosen refractive index, the ana-
of the incident and the laterally shifted reflected rays deflneﬁ,ﬁC result in the literature becomes applicable only for

an effective boundary of radiug>r.. We now can assume Rekr.=1000. Surprisingly(see however Ref21]), in the

that the ray 1s specularly rt_aﬂected at the _effect,|ve boundarycurrent situation nice agreement is found by simply assum-
resulting in a smaller effective angle of incidenge< y, and

X . : ing that the Goos-Hachen shift is identical to that is the TM
evaluate the Fresnel reflection coefficie(@tsat this smaller <. o< 'is indicated by the dashed curves in the lower panels
angley’. This angular shift has been observed in R&f)] i

4 . ) - of Figs. 2 and 3(For Rekr.=1000, however, it is appropri-
for rays approaching the disk from outside. Since the reflecéte tg work With( the correcct TE formulas pprop
tion probability is then reduced this qualitatively explains the In conclusion, we investigated the reflection coefficients
observed deviations from Fresnel’s laws in Figs. 2 and 3. '

F titati . d the distributi t a curved refractive-index boundary by relating them to
or a quantitative comparison we need the distrbution okegonances in a circular dielectric disk and derived analytic
angles of incidenc®(y), which can be related to the radial

: , o S expressions valid in the limit of large wave numbers. The
width proportional tor¢(n Rekr¢) =" of the caustic in the  yeyiations from Fresnel's laws can be explained within geo-
radial wave fieldJ,(nkr). (The same distribution of angles \qtric optics by incorporating the Goosithen effect. In
will also be used to smooth out the reflection coefficients asis work we concentrated on the wave field confined by
is appropriate even for the planar interfache variation of  rafiection inside the microcavity. The Goos+taen shift
angles of incidence arises from the intrinsic curvature of the, | affects the wave field outside the cavity, 16,20, be-
beam wave front and also directly from the curvature of the 5 ;e the modified angle of incidence results in a change of
interface—note that both mechanisms should contributg,e angle of refraction. It is desirable to investigate the im-
equally to the Goos-Hechen effect. We found that for our pjications on the remarkable emission directionality of non-
purposes() is sufficiently well approximated by that of & cjrcylar deviceg1,2], which sometimes departs substantially

Gaussian beam of half-width=r(n Rekro) 2R<re. Itis  from what is expected from geometric opti@2].
good to observe that this Gaussian beam geometry does not

put us into conflict with the finite disk size while at the same We gratefully acknowledge helpful discussions with M.
time leaving us in the paraxial regimenReko Berry, S. W. Kim, J. U. Nokel, K. Richter, R. Schubert, and
=(nRekry)¥*>1. For TM polarization the effective radius J. Wiersig.

[1] J.U. Nackel and A.D. Stone, Naturg.ondon 385, 45 (1997). Am. A 11, 1110(1994.
[2] C. Gmachl, F. Capasso, E.E. Narimanov, J.Uck&d, A.D.  [13] AW. Snyder and J.D. Love, IEEE Trans. Microwave Theory
Stone, J. Faist, D.L. Sivco, and A.Y. Cho, Scier8, 1556 Tech.MTT-23, 134 (1975.
(1998. [14] A.L. Cullen, Ann. Telecommun31, 359 (1976).
[3] A. Ashkin, Optical Trapping and Manipulation of Neutral Par- [15] Y.z Ruan and L.B. Felsen, J. Opt. Soc. Am3A550 (1986.
ticles Using LasergWorld Scientific, Singapore, 2001 [16] N. Fiedler-Ferrari, H.M. Nussenzveig, and W.J. Wiscombe,
[4] M. Hentschel and J.U. Nakel, in Quantum Optics of Small Phys. Rev. A43, 1005(1991).
Structures edited by D. Lenstra, T.D. Visser, and K.A.H.

- [17] M. Born, and E. Wolf,Principles of Optics(Pergamon Press,
van LeeuwenEdita KNAW, Amsterdam, 2000 Oxford, 1999.

[5] F. Goos and H. Hachen, Ann. PhyslLeipzig) 1, 333 (1947). [18] I.S. Gradshteyn and .M. Ryzhik, ifable of Integrals, Series,

%S} E"\':‘rtra?ng’?nghz:ysg‘ne(;pvz\ﬁz 8',|'§n70(\}9(5)]).t Soc. Am3A and Products edited by A. Jeffrey (Academic Press,
- T 9 o 9. . Opt ’ San Diego, 1994

8] Z?\?v.(lggn?/;jer and J.D. LoveOptical Waveguide Theory [19] D. Chauvat, O. Emile, F. Bretenaker, and A. Le Floch, Phys.
(Chapman and Hall, London, 1983 ) Eeljlll Ijl_ett'84’|_71D(20_OQ' Ph. Bal A Le Floch dE
[9] B.R. Horowitz and T. Tamir, J. Opt. Soc. Ar81, 586 (1977, 201 N.H. Tran, L. Dutriaux, Ph. Balcou, A. Le Floch, and F.

[10] H.K.V. Lotsch, Optik (Stuttgar} 32, 116 (1970; 32, 189 Bretenaker, Opt. Let20, 1233(1995.

(1970: 32, 299 (1971); 32, 553 (1971). [21] A. Haibel, G. Nimtz, and A.A. Stahlhofen, Phys. Rev.6B,
[11] J. Herb, P. Meerwald, M.J. Moritz, and H. Friedrich, Phys. 047601(2003).

Rev. A60, 853(1999. [22] N. B. Rex, H. E. Tureci, H. G. L. Schwefel, R. K. Chang, and

[12] D.Q. Chowdhury, D.H. Leach, and R.K. Chang, J. Opt. Soc.  A. D. Stone, Phys. Rev. Let88, 09410(2002.

045603-4



