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Fresnel laws at curved dielectric interfaces of microresonators
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~Received 23 November 2001; published 3 April 2002!

We discuss curvature corrections to Fresnel’s laws for the reflection and transmission of light at a nonplanar
refractive-index boundary. The reflection coefficients are obtained from the resonances of a dielectric disk
within a sequential-reflection model. The Goos-Ha¨nchen effect for curved light fronts at a planar interface can
be adapted to provide a qualitative and quantitative extension of the ray model which explains the observed
deviations from Fresnel’s laws.
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The fabrication of lasing microresonators@1,2# and opto-
mechanical microdevices@3# has generated a surge of inte
est in the confinement and propagation of light in small
electric structures. Some understanding has been achi
from the ray optics of these systems, complemented
Fresnel’s laws of refraction and reflection at the interfac
e.g., in order to identify and describe the relevant reson
modes@1,2#. Fresnel’s laws give the probability of reflectio
and refraction of plane electromagnetic waves at planar
terfaces of media with different refractive indexn. Mi-
croresonators, however, often are so small that the curva
of their boundary cannot be neglected.

In this paper we investigate, in the limit of large wav
numbers, the corrections to the Fresnel coefficients that
pear due to the curvature of the dielectric interface. The
flection coefficients are obtained via a sequential-reflec
model @4# from the resonance widths of a microresonat
which are analytically accessible for large wave numbe
The deviations from Fresnel’s laws are most noticea
around the critical angle for total internal reflection,xc
5arcsin(1/n) ~where the refractive index of the surroundin
medium is set to unity! and amount to a systematic reductio
of the reflection probability.

The reduction of the reflection probability is conventio
ally related to tunneling escape at the curved interface
view of the previous success of the ray model, which ofte
desired to be retained for its simplicity, we provide an alt
native qualitative and quantitative explanation of the dev
tions by incorporating into this model the Goos-Ha¨nchen ef-
fect @5–10#. This effect results from the interference of ra
in a beam with slight variations of the angle of incidence a
consists of a shift of the effective plane of reflection. At
curved interface, it turns out that the reflection probability
then reduced because the angle of incidence at the effe
interface is smaller than at the physical interface.

There is evidence obtained in the context of quantu
mechanical scattering problems@11# that incorporating the
Goos-Hänchen effect is equivalent to a semiclassical a
proximation. Also the effect has been used in Ref.@12# to
explain the decreased spacing of resonances observed i
periments with dielectric spheres, in terms of an effect
optical size of the cavity that is larger than its physical si
Our work can be seen as complementary to this previ
study, because we are concerned with the resonance wi
not only the resonance energies.
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Curvature corrections to Fresnel coefficients have b
addressed in the past in a number of works, by apply
various techniques; see, for example, Refs.@13–16#. The
works closest in spirit to the present paper are those
employ the complex ray method, e.g., to describe light r
approaching a disk from outside@15,16#.

Although we restrict our discussion to circular interface
the results for the reflection coefficients should be applica
to microresonators of general shape as long as locally
curvature can be approximated as a constant.

According to Fresnel’s laws, a plane electromagne
wave incident on a planar dielectric interface with angle
incidencex is reflected with the polarization-dependent c
efficients@17#

RTM5
sin2~x2h!

sin2~x1h!
5Un cosx1cosh

n cosx2coshU
2

, ~1a!

RTE5
tan2~x2h!

tan2~x1h!
5Ucosx1n cosh

cosx2n coshU
2

, ~1b!

where TM~TE! signifies transverse polarization of the ma
netic ~electric! field at the interface andh5arcsin(nsinx) is
the direction of the refracted beam~according to Snell’s law!.

Let us compare the Fresnel coefficients with the reflect
coefficients at a curved interface with radius of curvaturer c .
Their angular dependence can be conveniently obtained f
the energies and widths of resonance states in a t
dimensional circular disk of radiusr c . In this geometry the
two possible polarization directions decouple and angu
momentum~quantum numberm! is conserved. We introduce
polar coordinatesr and f and denote the~complex! wave
number byk. We will concentrate on the case close to ge
metric optics Rekrc@1.

The resonance states are obtained by matching the w
field proportional toJm(nkr)eimf inside the disk~with the
Bessel functionJ) at r 5r c to the wave field proportional to
Hm

(1)(kr)eimf outside the disk~with the Hankel function
H (1)), where the matching conditions follow from Maxwell’
equations:

Jm~nkrc!Hm
(1)8~krc!5nJm8 ~nkrc!Hm

(1)~krc! ~2!

for TM polarization, and
©2002 The American Physical Society03-1
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nJm~nkrc!Hm
(1)8~krc!5Jm8 ~nkrc!Hm

(1)~krc! ~3!

in the TE case~primes denote derivatives!. Given a complex
solution k, the angle of incidence is obtained from the re
part by comparing the angular momentum in the ray pict
(L5nprc sinx,p5\ Rek) and in the wave picture (L
5\m),

sinx5
m

n Rekrc
, ~4!

while the reflection probability

R5exp~4n Im krc cosx! ~5!

follows from the imaginary part ofk because it determine
the intensity decay rateg I522 Imkc ~with c the velocity of
light outside the disk!, which in turn can be related toR by a
ray-based model of sequential reflections@4#: After s reflec-
tions the wave intensity inside the disk drops to a fractionRs

of the initial intensity. Reflections occur with a rategs
5c/(2nrc cosx), where the denominator is the optical pa
length between consecutive reflections. After timet, we re-
late Rtgs5e2tg I, directly yielding Eq.~5!.

Because the discrete set of resonance energies obta
from Eqs.~2! and ~3! is meaningful only for the disk, let us
first derive analytical expressions for the resonance width
a function of a continuous resonance energy, that smoo
interpolate between these solutions. It is interesting to n
@4# that one cannot simply expand Eqs.~2! and ~3! in Im k
when k is not close to an exact solution. Moreover, for T
polarization Imk will diverge at the Brewster angle if it is
calculated by inserting the Fresnel coefficient~1b! into Eq.
~5!. In order to achieve a more accurate expansion we s
rate out the problematic term and cast Eqs.~2! and ~3! into
the form

Jm8 ~nkrc!

Jm~nkrc!
5F~krc!, ~6!

with

F TE~x!5n
Hm

(1)8~x!

Hm
(1)~x!

, F TM~x!5n22F TE~x!, ~7!

depending on the polarization. In both cases,F(krc) is a
slowly varying complex function of its argument, and th
argument can be taken real because Rek@uIm ku. The loga-
rithmic derivative of Bessel functions, however, is a rapid
fluctuating function, and its dependence on Imk has to be
worked out carefully. This can be achieved by approximat
by tangents@18#:

Jm8 ~nkrc!

Jm~nkrc!
52tana cosx, ~8!

a5m cotx1mx2m
p

2
2

p

4
1 in Im krc cosx, ~9!
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wherex is given as a function of Rek by Eq. ~4!. We ex-
pandeda linearly in Imk and neglected terms of orde
(Rekrc)

21. Equation~6! can now be solved fora, without
any further approximation. From the imaginary part one d
duces

2Im krc5
1

n cosx
Im arctan

F
cosx

. ~10!

Although this can already be taken as the final result,
may further insert the uniform approximation@18#

F TE5 in coshF11
1

sin2h
S K2/3~z!

K1/3~z!
21D G , ~11!

and similarly for F TM5F TE/n2, with the modified Besse
function K, the angle of refractionh ~which is a complex
number for x.xc), and z52 i Rekrc cos3h/(3 sin2h). In
Fig. 1 we illustrate that Eqs.~10! and ~11! agree very well
with the exact solutions of Eqs.~2! and~3!, even close to the
Brewster angle for TE polarization, and interpolate smoot
in between.

The angular dependence of the reflection coefficients
now be obtained by combining Eqs.~5! and~10!, giving the
final result

R5Ucosx1 iF
cosx2 iFU

2

. ~12!

Figures 2 and 3 show the results for the two values Rekrc
550 and Rekrc5150, respectively. Deviations from
Fresnel’s laws@Eq. ~1!# are most visible around the critica
angle xc5arcsin(1/n) where the reflection coefficients in
crease rapidly as the regime of total internal reflection
approached. The correction consists not only in a broaden
of the transition interval, but most notably also in a shift
this transition region toward higher angles of incidence,
sulting in a systematic reduction of the reflection coefficie

FIG. 1. Resonance widths2Im krc for a dielectric disk with
Rekrc550 and a refractive indexn53.29 ~upper panel! and n
51.3 ~lower panel!, for TM and TE polarized light, as a function o
the angular momentum@parametrized according to Eq.~4!#. The
analytical result from Eqs.~10!,~11! ~solid curves! is compared with
the exact results from Eqs.~2!,~3! ~squares!.
3-2
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FIG. 2. Reflection coefficientsR in a dielectric disk with
Rekrc550. The solid curve is the analytical result Eq.~12!, which
smoothly interpolates between the exact solutions of Eqs.~2! and
~3! with real part close to 50@squares, translated into angula
dependent reflection coefficients by Eqs.~4! and ~5!#. The dashed
curve is the result of incorporating the Goos-Ha¨nchen effect into a
ray model~assuming for TE polarization that the shift is the same
for TM polarization, for reasons explained in the text!. The dotted
curve is Fresnel’s law@Eq. ~1!#.

FIG. 3. Same as Fig. 2 but for a wave number Rekrc5150. The
result based on the Goos-Ha¨nchen effect is almost indistinguishab
from the exact result.
04560
The deviations from Fresnel’s laws in Figs. 2 and 3
crease as Rekrc is reduced, that is, the more noticeable t
curvature of the interface is. On the other hand, in the ze
wavelength limit Rekrc→` of geometric optics any inter
face appears planar, and Fresnel’s laws should apply with
modification. Indeed, it can be seen that they are recove
from Eq. ~12! when the approximation by tangents is al
applied to the Hankel functions inF, resulting in F TM

5 in21 cosh, F TE5 in cosh. The deviations close to the
critical angle are directly related to the breakdown of th
approximation when the argument of the Hankel functio
becomes smaller than the index. As we will discuss now,
curvature corrections to Fresnel’s coefficients can be
tained within a minimal extension of the ray picture wh
the Goos-Ha¨nchen effect is taken into account~the result
obtained is given by the dashed curves in Figs. 2 and 3!.

The Goos-Ha¨nchen effect@5–10# refers to the displace
ment of the reflected beam when the incident beam cons
of rays with slight variations of the angle of incidence, a
arises because each ray experiences a slightly different p
shift when it is reflected. As is illustrated in Fig. 4~a!, the
lateral shift along the interface can also be interpreted
resulting from a displacement of the effective plane of refl
tion ~a signature of this displacement is the increased Wig
delay time which has recently been measured at meta
gratings@19#!.

s

FIG. 4. ~a! Goos-Hänchen shift at a planar interface. An incide
beam containing contributions from plane waves of slightly diffe
ent angles of incidencex appears to be reflected at a position that
shifted a distancezGH away from the point of incidence. Alterna
tively, one can think of the beam as being reflected at a shi
interface indicated by the dashed lines.~b! Goos-Hänchen effect at
a curved interface. The reflection seems to occur at an interfac
larger curvature radiusr c8.r c under a smaller anglex8,x of inci-
dence.
3-3
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Since at a planar interface the reflection law is not
fected by parallel displacement and is fulfilled for the me
angles of incidence, the reflection coefficients are not
fected by the Goos-Ha¨nchen effect—the only consequen
of the slight variation of angles is that their angular dep
dence is smeared out. However, the situation changes
curved interface@11# as shown in Fig. 4~b!. The intersection
of the incident and the laterally shifted reflected rays defi
an effective boundary of radiusr c8.r c . We now can assume
that the ray is specularly reflected at the effective bound
resulting in a smaller effective angle of incidencex8,x, and
evaluate the Fresnel reflection coefficients~1! at this smaller
anglex8. This angular shift has been observed in Ref.@20#
for rays approaching the disk from outside. Since the refl
tion probability is then reduced this qualitatively explains t
observed deviations from Fresnel’s laws in Figs. 2 and 3

For a quantitative comparison we need the distribution
angles of incidenceP(x), which can be related to the radia
width proportional tor c(n Rekrc)

22/3 of the caustic in the
radial wave fieldJm(nkr). ~The same distribution of angle
will also be used to smooth out the reflection coefficients
is appropriate even for the planar interface.! The variation of
angles of incidence arises from the intrinsic curvature of
beam wave front and also directly from the curvature of
interface—note that both mechanisms should contrib
equally to the Goos-Ha¨nchen effect. We found that for ou
purposesP(x) is sufficiently well approximated by that of
Gaussian beam of half-widths5r c(n Rekrc)

22/3!r c . It is
good to observe that this Gaussian beam geometry doe
put us into conflict with the finite disk size while at the sam
time leaving us in the paraxial regimen Reks
5(n Rekrc)

1/3@1. For TM polarization the effective radiu
-

l
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of curvaturer c8 can then be calculated by applying the fo
mulas of Ref.@7# ~which are lengthy expressions and hen
not given here!. The result of this Goos-Ha¨nchen-effect-
based approach is presented as the dashed curves in th
per panels of Figs. 2 and 3. There is good agreement with
exact results obtained within the sequential-reflection mo
For TE polarization and the chosen refractive index, the a
lytic result in the literature becomes applicable only f
Rekrc*1000. Surprisingly~see however Ref.@21#!, in the
current situation nice agreement is found by simply assu
ing that the Goos-Ha¨nchen shift is identical to that is the TM
case, as is indicated by the dashed curves in the lower pa
of Figs. 2 and 3.~For Rekrc*1000, however, it is appropri
ate to work with the correct TE formulas.!

In conclusion, we investigated the reflection coefficien
at a curved refractive-index boundary by relating them
resonances in a circular dielectric disk and derived anal
expressions valid in the limit of large wave numbers. T
deviations from Fresnel’s laws can be explained within g
metric optics by incorporating the Goos-Ha¨nchen effect. In
this work we concentrated on the wave field confined
reflection inside the microcavity. The Goos-Ha¨nchen shift
also affects the wave field outside the cavity@11,16,20#, be-
cause the modified angle of incidence results in a chang
the angle of refraction. It is desirable to investigate the i
plications on the remarkable emission directionality of no
circular devices@1,2#, which sometimes departs substantia
from what is expected from geometric optics@22#.

We gratefully acknowledge helpful discussions with M
Berry, S. W. Kim, J. U. No¨ckel, K. Richter, R. Schubert, an
J. Wiersig.
ry

e,

,

,

ys.

.

d
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